首页> 外文OA文献 >Multi-area environmental economic dispatch with reserve constraints using enhanced particle swarm optimization
【2h】

Multi-area environmental economic dispatch with reserve constraints using enhanced particle swarm optimization

机译:利用增强粒子群优化算法预留约束的多区域环境经济调度

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

In this paper, the multi-area environmental economic dispatch (MAEED) problem withreserve constraints is solved by proposing an enhanced particle swarm optimization (EPSO)method. The objective of MAEED problem is to determine the optimal generating scheduleof thermal units and inter-area power transactions in such a way that total fuel cost andemission are simultaneously optimized while satisfying tie-line, reserve, and otheroperational constraints. The spinning reserve requirements for reserve-sharing provisions areinvestigated by considering contingency and pooling spinning reserves. The control equationof the particle swarm optimization (PSO) is modified by improving the cognitive componentof the particle's velocity using a new concept of a preceding experience. In addition, theoperators of PSO are dynamically controlled to maintain a better balance between cognitiveand social behavior of the swarm. The effectiveness of the proposed EPSO has beeninvestigated on four areas, 16 generators and four areas, 40 generators test systems. Theapplication results show that EPSO is very promising to solve the MAEED problem.
机译:通过提出一种改进的粒子群算法(EPSO),解决了具有保护约束的多区域环境经济调度(MAEED)问题。 MAEED问题的目的是确定热力单元和区域间电力交易的最佳发电时间表,以使总燃料成本和排放同时得到优化,同时满足联络线,储备和其他运行约束。通过考虑应急准备金和合并纺丝储备,研究了储备共享准备金的纺丝储备要求。使用先前经验的新概念,通过改善粒子速度的认知分量,修改了粒子群优化(PSO)的控制方程。另外,动态地控制PSO的操作者,以在群体的认知行为和社会行为之间保持更好的平衡。拟议的EPSO的有效性已在四个领域(16个发电机和四个领域40个发电机测试系统)上进行了研究。应用结果表明,EPSO解决MAEED问题非常有前途。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号